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Abstract

Recently several publications have analysed whether deep neural networks can be used as
an encoding model for brain activity in the hierarchically organized human visual system.
These so-called deep encoding models are promising for understanding higher-level visual
representations in the brain and for visual perception reconstruction, but have so far
primarily been analysed for static image data. In this project we investigated encoding
spatio-temporal stimulus data with a purely unsupervised deep encoding model based on a
soft K-means hierarchy. The model consists of two learning routines, where the first routine
is used only for the raw-pixel based first layer and the second routine is used repeatedly for
all higher layers. Based on the acquired feature sets BOLD activity is predicted via ridge
regression for evaluating the predictive power of the model. The linear model was verified
by voxel-wise estimation of noise with Relevant Dimensionality Estimation. The learned
representations were investigated in more detail by using Representional Dissimilarity
Matrices. The features learned in the first layer are capable of predicting BOLD activity
in early and few intermediate areas, however with lower predictive power than the hand-
crafted state-of-the-art Motion Energy model from [Nishimoto et al., 2011]. In comparison
to the first layer of the K-means model, its higher layers lead to better signal prediction in
a subset of voxels in intermediate and higher level regions of interest, in particular in areas
pSTS, IPS, MTp and EBA. In higher visual cortex areas however the K-means model is
often outperformed by semantic word2vec based features similar to the category model
in [Huth et al., 2012]. We conclude that while this completely unsupervised hierarchical
learning routine is in principle capable of predicting voxel activity in the lower visual areas
in response to spatio-temporal stimuli, it can only explain a few new voxels in intermediate
and higher layer regions of interest.
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1 Introduction

1.1 Background and rationale

Although a wide range of experimental results exists, computational models of the visual sys-
tem – including V1 – are still speculative [Carandini et al., 2005]. While the visual features
V1 responds to could often be shown to resemble Gabor functions [Hubel and Wiesel, 1959],
it has been described as questionable whether these represent the complete feature spectrum
covered by V1 or whether the experimental results fall victim to methodological biases
[Olshausen and Field, 2005]. Since early studies about the cat’s visual cortex it has also
been known that feature detectors in the visual cortex do not exist in the brain a-priori,
but are learned from the experienced visual environment during a critical period after birth
[Hubel and Wiesel, 1970], [Blakemore and Cooper, 1970].

Tracing how the BOLD signal develops over the ventral and dorsal streams in reaction to
specific visual stimuli is currently the only method of investigating human visual processing
over the whole visual cortex. Visual encoding models describe how visual information
about the world could be represented in the brain. [Nishimoto et al., 2011] showed that an
encoding model based on motion energy in video data – using a hand-crafted dictionary
of Gabor filters (a Gabor Filter Pyramid (GFP)) and extracting motion energy (as in
[Adelson and Bergen, 1985]) from their responses – can explain the BOLD activity in early
visual areas. However defining such a model requires experimentally verified knowledge
about which type of feature detectors to expect. Due to this a hand-crafted approach
for modelling representations is limited to experimental knowledge about early visual
areas. In particular in V1 neurons have been experimentally verified to respond to edges
[Hubel and Wiesel, 1959] and edge conjunctions [Ito and Komatsu, 2004]. However the
representations in intermediate (such as V4, V7) and higher areas (such as FFA, EBA)
remain unexplained with the Motion Energy model.

From [Huth et al., 2012] we know that activity in higher-order areas in reaction to natural
video stimuli can be explained with a category model based on WordNet categories, forming
a continuous semantic space over the cortex. However, this model relied on previously
created manual video stimulus labels. Desirable would be a computational encoding model
leading from simple low-level features to the continuous semantic categories that we
saw in this publication. In principle, any evidence for a general learning algorithm for
higher order representations would help understanding these transitions. There is reason
to assume that such a model of visual processing would be reflected in the BOLD signal
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1 Introduction

in a mostly hierarchical way [Felleman and Van Essen, 1991]. Refer to figure 1.1 for a
comparison of the areas that can be predicted by the low-level motion-energy model from
[Nishimoto et al., 2011] (Red) and the high-level category model from [Huth et al., 2012]
(Green).

Figure 1.1: Correlations between acquired and predicted BOLD responses
for subject SN. Red: Motion energy model, Green: Category model.

Due to the increasing computational resources, recently many hierarchical representation
learning models for visual data could be investigated with higher amounts of training
data, deep complex architectures and effective architectural optimizations by the machine
learning community [Bengio et al., 2013], [LeCun et al., 2015]. These models are currently
leading to promising results for predicting object types or categories on top of a hierarchy
of learned low-level representations. These low-level representations usually include, but
are not limited to the Gabor filter-like edge structures that had been studied intensely in
V1 experiments.

While these deep neural networks are not intended to be meaningful models of biological
visual processing, convolutional unsupervised learning strategies are indeed inspired by our
knowledge about the visual cortex. It is worth investigating and it is being investigated
whether a deep representation learning model that has been proven to work well for a
specific domain (visual object recognition, audio) does reflect brain activity in response
to the same domain. This idea – to investigate deep encoding models – is the general
framework of this thesis project.

4



1.2 Related publications

1.2 Related publications

1.2.1 Deep Encoding Models

The idea to encode processing stages in the brain with hierarchical representation
learning models has already been explored a few years ago: An early example is
[Gerven and Lange, 2010], who used a hierarchical conditional restricted Boltzmann ma-
chine to encode BOLD brain activity for characters taken from the MNIST database
and also reconstructed the perception. However due to the current resurrection of neural
networks – and due to the availability of both deep learning libraries and large training data
sets suitable for studying encoding – the idea has recently been more enthusiastically ex-
plored by several groups, for instance [Güçlü and van Gerven, 2014], [Agrawal et al., 2014]
and [Cadieu et al., 2014].

[Agrawal et al., 2014] and [Gerven, 2014] have used the pre-trained [Krizhevsky et al., 2012]
ImageNet deep neural network (implemented in the Caffe framework) to encode static
images. Their fMRI datasets had originally been published in [Kay et al., 2008] and
[Naselaris et al., 2009] for studying hand-crafted encoding models. They both found that
the voxel activity in response to the purely spatial stimuli covered different voxel regions,
in the case of [Gerven, 2014] a feature gradient along the ventral pathway. [Gerven, 2014]
have also derived receptive fields for voxels, and could show that different layers cover
mutually exclusive voxel areas. [Agrawal et al., 2014] compared the same deep neural
network against Fisher vectors. There has also been an evaluation for static images with a
large selection of several object recognition models (both deep and shallow models) based
on Representational Similarity Analysis (RSA) in [Khaligh-Razavi et al., 2014].

All of these publications have been working with static spatial stimuli. There still have been
few encoding model publications working with spatio-temporal data. [Häusler et al., 2013]
introduces a temporal restricted Boltzmann machine to encode videos, and derives a spike
response model from them to study its properties. [Ramakrishnan et al., 2015] study two
single-layer object recognition models from computer vision in response to short video
sequences. To our knowledge there is no published attempt to use hierarchically learned
spatio-temporal representations to encode BOLD brain activity in response to video signals
in large cortical areas.

1.2.2 K-Means based deep encoding

A soft K-means model trained on whitened prototypes had been shown to lead to similar low-
level representations and prediction results as more tuning-intensive deep neural networks
in [Coates et al., 2011] and [Coates and Ng, 2012], compared to the 2011 state-of-the-art
deep networks. Also, K-Means representations in lower levels have been shown to be
largely equivalent to methods with solid information-theoretical foundation such as ICA
if conditions such as input patch whitening are met [Vinnikov and Shalev-Shwartz, 2014].

5



1 Introduction

Bag of Words models in general are a common basis for object recognition in computer
vision applications. Furthermore, it is possible to build a hierarchical model based on them,
as described in [Coates and Ng, 2012].

This thesis project studies whether a completely unsupervised hierarchical representation
learning model based on soft K-means can encode spatio-temporal stimuli: After an initial
convolutional layer as described in [Coates et al., 2011] it builds each successive layer using
the process described in [Coates and Ng, 2012]. We use the same stimuli and whole-cortex
dataset as in [Huth et al., 2012] to be able to use the Motion Energy and Semantic features
as reference models. The derived feature maps are evaluated for functional and anatomical
ROI-wise voxel coverage, noise (derived from Relevant Dimensionality Estimation) and
Representational Dissimilarity in comparison to the reference models.

The basis for deciding to study this soft K-means model was the observation of a performance
increase when encoding purely static features over a hand-crafted GFP based model with
this soft K-means variant. Furthermore, K-means-based representation learning keeps the
number of intrinsic parameters low, allowing to shift the tuning effort to highly influential
side parameters like the receptive field size or even K [Coates et al., 2011]. Also, early in
this project we assumed that from a biological point of view it could be plausible that
the brain uses similar mechanisms (see section 4.1), having the idea of a general neural
learning algorithm in mind.

There have been few publications attempting to encode spatial or spatio-temporal stim-
uli with a Bag of Words-type models: In [Hu et al., 2014] it was shown that a two-layer
multiple-firing hard K-means hierarchy could predict voxel activity in response to static
images up to V2. This was done on static artificial stimuli, with electrophysiological mea-
surements of neuron unit responses, but not over the whole cortex as it is possible in fMRI.
The publication also noted that K-means does fit into the framework of competitive Heb-
bian learning. Another publication, [Ramakrishnan et al., 2015], compared the biologically
plausible HMAX model to a SIFT-features based Bag of Words model with histogram
features. However while they encoded 10-minute video stimuli, they did not make the
attempt to form a hierarchy.

Including the temporal dimension into Bag of Words-type models is considered as non-trivial
in literature [Konda et al., 2013], [Hyvärinen et al., 2009]. At the beginning of this thesis
project, the benchmark model for video feature learning was still the hierarchical ISA model
proposed in [Le et al., 2011]. An important downside of this model is its computational
effort, which would have made it difficult to vary side parameters. In [Konda et al., 2013],
this ISA model had been compared to K-means based approaches as well to reduce the
computational effort. Their synchrony K-means approach was evaluated at the beginning
of the thesis through communication with its authors, however it has lead to less satisfying
results in comparison to the hierarchy proposed by Adam Coates.
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1.3 Structure of the document

1.3 Structure of the document

The thesis document is structured as follows:

Chapter 2 Materials and Methods first describes the data sets and the encoding model
framework. We introduce our K-means model in an overview, and then every step in
detail. We also introduce our main analysis methods, in particular the linear model,
noise analysis based on Relevant Dimensionality Estimation and Representational
Dissimilarity Matrices.

Chapter 3 Results and Discussion presents the model performance and all main results
and discusses them in detail.

Chapter 4 Further Discussion considers a biological implementation of the K-means
model, debates its limitations and generally explores the potential of deep encoding
models.

Chapter 5 Conclusion provides a short summary of the findings of this project.

Appendix A Reference Models introduces the Motion Energy model in detail and de-
scribes the word2vec-based Semantic features.
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2 Materials and Methods

This chapter first introduces the feature learning hierarchy and then describes the compo-
nents of the sequence in detail. Also, the methods used for model evaluation are introduced.
For a description of the reference models see Appendix section A.

2.1 Experimental data and protocol

2.1.1 The fMRI dataset

We used the 3T dataset recorded over the full cortex that was first presented in
[Huth et al., 2012]. The experimental design and stimulus dataset for this publication
were originally introduced in [Nishimoto et al., 2011]. In the original experiment, data
collection was only conducted in the occipital lobe with a 4T scanner on 3 subjects
in a single-subject study framework. The [Huth et al., 2012] category model uncovered
widespread semantically continuous object representations over a large section of the whole
cortex. We chose the full cortex 3T data to be able to compare to the results of semantic
encoding models. While in total 6 male subjects where recorded for [Huth et al., 2012],
within the thesis document we are only allowed to present visual results for the data of a
single subject. However we have analysed our models on all subjects within the scope of
this project.

A drawback of the data set choice is that the temporal sampling rate of the 3T dataset
used here is TR = 2sec, whereas it was TR = 1sec in [Nishimoto et al., 2011]. Another
drawback is the smaller voxel size (spatial resolution), which is 2.24×2.24×4.1mm3 in
our 3T data and was 2.03×2.03×2.5mm3 in the 4T data over the occipital lobe from
[Nishimoto et al., 2011]. Nonetheless we considered the possibility to explore whole cortex
data an advantage.

The training set was acquired in 12 scans of 10 minutes, leading to 3600 training samples
in total for every subject. The test set consisted of 270 samples. See Table 2.1 for all
experimental parameters.

The test set was collected in 9 separate 10-minute scans scattered throughout the training
set acquisition. Each of these scans consisted of 10 1-minute test set blocks, which were
permuted randomly (fixed sequence for all subjects) within these 10-minute presentations.
This means that in total 5400 seconds of test data have been acquired. The test data set
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2 Materials and Methods

Scanner model 3T Siemens TIM Trio, 32-channel coil
Scanning center UC Berkeley Brain Imaging Center
Repetition time (TR) 2.0045s

Echo time (TE) 31ms

Flip angle 70°
Voxel size 2.24×2.24×4.1mm3

Axial slices 32 (entire cortex)
Matrix size 100× 100

Projection screen position 24× 24 of the visual angle
Field of view (FOV) 224× 224 mm2

Number of recorded voxels 30662 (single subject)
Training set acquisition 3600 acquired samples (7200 seconds

recording)
9 equi-stimuli scans, 10min each

Test set acquisition 270 acquired samples (5400 seconds
recording)

Playback framerate 15Hz

Table 2.1: fMRI recording parameters, originally listed in [Huth et al., 2012].
The original publication also includes fMRI data preprocessing details.

was then taken as the average BOLD response to the same stimuli over all these runs,
leading to a 270 samples test set at TR = 2sec. This resampling recording routine accounts
for effects of adaptation, long-term drifts or other random influences like subject drowsiness
or inattention which could corrupt the much shorter test set. This also leads to a clean
signal for evaluating the actual representation in the brain, which is preferable for encoding
models since their intention is studying representations, not predicting data on-the-fly.
The Motion Energy model and the category model were evaluated based on this averaged
test dataset. The original individual test set recordings are available as a further resource.
Learning was done on the longer and noisy training data, which was acquired in single
recording sessions.

2.1.2 The video stimulus dataset

The stimulus video dataset and its preprocessing steps have been described in detail in
the experimental procedures and supplemental information of [Nishimoto et al., 2011]. We
repeat its main properties in brief: The video data consisted of movie trailers, clips from
thematic video libraries and a small set of HD movies from YouTube. The reason for
assuring a wide variety was to reduce bias in the training stimulus selection. These video
clips where cropped at the sides to form a square-shaped stimulus, and resized to an
identical playback resolution of 512 × 512. Clips of a length of 10 to 20 seconds were
extracted and concatenated into the training and test set. The individual frames were
replayed at slow motion (15Hz) during the experiment due to the low temporal resolution
of fMRI recordings.

To reduce the computational load during the feature extraction and evaluation, the movie
clips where rescaled to 96× 96 before entering the feature extraction routine. Any model
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2.1 Experimental data and protocol

with raw pixel-based features (Motion Energy and K-means) was evaluated on these rescaled
frames.

2.1.3 Framework for voxel-wise encoding of stimuli

Figure 2.1: Spatio-temporal stimulus encoding for BOLD signals. A encoding
model is created for the activity of every voxel (mass-univariate approach).

Next to using one of their datasets, we also follow the same approach for voxel-wise
encoding that is used by the Gallant Lab at UC Berkeley, illustrated in Figure 2.1. In this
framework they usually study fMRI data during passive perception of natural stimuli. Here
these stimuli are natural video stimuli, i.e. spatio-temporal stimuli with natural image
statistics as described in section 2.1.2. This input space is transformed into a feature space
that is assumed to be the actual cortical input representation. The theory behind input
transformation and feature extraction relies on the idea that each cortical area responsible
for perception represents information explicitly that is only implicitly contained in the
input1. This implicit information should be uncovered by choosing an appropriate feature
extraction method or encoding model. The newly formed feature vector is then used for
a voxel-wise prediction of the BOLD signal at the time when the underlying stimulus
occurs. In our case of spatio-temporal stimuli, we use a feature vector that extends into the
temporal dimension, i.e. there is one feature vector for every sampling point. This feature
vector is used for the prediction of the complete BOLD signal (i.e. a prediction for every
sampling point) recorded in one voxel during the training set recording.

For the brain signal prediction, usually a linear model such as ridge regression is used. One
practical reason for this is that regularized linear models are better at preventing overfitting
than non-linear models. The theoretical reason is that linear models are better suited
for the ideas behind encoding models in general (details in section 2.3.2). The Gallant
Lab also tries to avoid overfitting the predictive model by recording very long (multiple
hours) scanning sessions. They furthermore follow the general model evaluation framework
of machine learning by training the regression model on a training set, evaluating their
models solely on a separate test set, and searching for ridge regression parameters in a
cross-validation routine.

1Description of the Gallant lab approach: http://gallantlab.org/approach.html

11
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2 Materials and Methods

While the first step, the encoding into a new feature space usually relies on a type of
feature extraction that is believed to occur in the sensory cortices, in the linear modelling
step other models of cortical processing such as sparsity can be introduced.

In a final evaluation, both [Kay et al., 2008] and [Nishimoto et al., 2011] attempted to
detect (and effectively reconstruct) the input from the test set.

2.2 Details of the K-means based model

This section first provides a brief overview on how our K-means-based model is trained.
Subsequently all steps of this unsupervised model are described in detail.

Figure 2.2: The hierarchical K-means model. The initial layer extracts features
from 4D spatio-temporal patch blocks using the pre-trained 4D spatio-
temporal centroids. Each successive layer then first computes energy
correlation on the feature data from the previous level and forms receptive
fields. It then extracts receptive-field based patches from the previous
level’s feature data for learning new receptive-field based centroids. These
new centroids are used for the receptive-field based feature extraction
from the previous level.

2.2.1 Overview

The prototype extraction and training in the first layer generally follows
[Coates et al., 2011], while each successive layer is based on the receptive field learning
method using energy correlation from section 5 of [Coates and Ng, 2012]. Since we assume
that preserving spatial structure is important for encoding models for the visual system,
we decided to learn the receptive fields within 2× 2 spatial regions2.

2This idea has briefly been described in section 3.5 of [Coates and Ng, 2011]. Details were then developed
in the course of the thesis project.
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2.2 Details of the K-means based model

The complete model is illustrated in Figure 2.2. The initial input data to the K-means
learning hierarchy are 4D patch hyper-cuboids (subsequently (spatio-temporal) patch block
or simply patch) randomly extracted from the 96×96×3 training frames. These 4D patches
are used to train the centroids for the first layer. In contrast to [Coates et al., 2011] we
decided to use three different spatial patch sizes, resulting in centroids of three different
sizes. We decided to do so since there is evidence that in the visual system image features
of different scales are represented. [Nishimoto et al., 2011] also used a grid structure with
different spatial block sizes for this reason.

Successively iterating through all frames of a separate pre-training video dataset, a random
patch of the current patch size is extracted from each frame until the prototype training
patch dataset for the current patch size contains the desired number of patches. The patches
are whitened and then used to learn K = 1000 K-means prototypes. The procedure is
repeated for each of the three patch sizes in the first layer.

Using these prototypes, continuous features are extracted for each frame using a soft
K-means feature extraction (referred to as K-means (triangle) in [Coates and Ng, 2011],
see section 2.3). These three feature vectors are then concatenated to learn the next layer,
where pair-wise energy correlation is used to uncover feature dependencies. The pair-wise
correlations are used to form receptive fields by grouping the output features into RN = 20

groups of T = 200 highly correlated features. The receptive fields are used to extract new
patch blocks from the feature data of the previous layer, on top of which the next layer’s
K-means centroids are learned and used for feature extraction. The number of prototypes
for all higher levels is KN = 500. Each new higher layer repeats this process. To reduce
complexity, we decided to use the same parameters RN and KN for every new layer. We
determined these parameters with a simple grid search over the higher layer training routine
and the ridge regression prediction.

The output data of every hierarchy layer is a feature vector describing every single stimulus
frame and its 7 successive frames3. This feature vector will then be downsampled to TR

and fitted to the BOLD activity with ridge regression as in [Nishimoto et al., 2011].

2.2.2 K-means algorithm

The K-means algorithm is a point-assignment clustering method that iteratively leads
to a set of cluster prototypes (centroids). In the first level of our model, the data points
are image patches that are extended into the temporal and color dimension, forming 4D
spatio-temporal patch blocks. The patch blocks are flattened to a vector before centroid
training. Initialized at K random data points, the desired prototypes are adjusted in each
iteration using algorithm 1.

3The constant temporal length of T7 frames was chosen since it was best performing during the previous
lab rotation project. At a presentation frame rate of 15Hz 7 frames are 0.25TR.
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2 Materials and Methods

The objective function that is minimized by standard K-means can be defined as in
[Bishop et al., 2006]:

J =
N∑
n=1

K∑
k=1

rnk||x̄n − p̄k||2 (2.1)

rnk =

{
1 if k = argminj ||x̄n − p̄j ||2

0 otherwise
(2.2)

The x̄ are the spatio-temporal patch blocks in the training set and the p̄ are the prototypes
that are optimized in every iteration. rnk describes the assignment of the data points to
their closest centroid.

Data: N standardized and whitened image patches x̄
Result: K cluster prototypes p̄
Initialization: p̄← K random data points from x̄ ;
for 50 iterations do

for each image patch x̄n do
for each patch prototype p̄j do

Compute the euclidean distance d(x̄n, p̄j) =
√
||x̄n − p̄j ||2 ;

Find the closest patch prototype p̄j and assign x̄n to it ;
end

end
for each patch prototype p̄j do

Adjust p̄j to the mean of all images patches x̄p assigned to it ;
end

end
Algorithm 1: Standard K-means algorithm used in this thesis.

Unsupervised centroid training For training the K-Means centroids in the first layer, a
separate RGB video data set was used. This was scaled down to the same spatial resolution
as the stimulus dataset (96× 96× 3) during processing, and was randomly extracted from
a collection of the same category of videos as the stimulus set. It was made sure that the
videos contained in this dataset were not contained in the stimulus data. The higher-level
centroids were trained on the stimulus dataset.

For training the first level, from this separate video dataset we extracted 2.500.000

S6× S6× T7 and S10×S10×T7 RGB patches, and due to memory limitations 2.000.000

patches for the largest patch size S14× S14× T7. Since we were using RGB patches, a
spatio-temporal patch block actually had the dimension S×S×T ×C. The color dimension
has been included within the flattened patch vectors used for training to avoid learning
RGB color information separately from each other.

Furthermore, we decided to enclose the temporal dimension as a component of each RGB
color channel. In the implementation this meant combining the color dimension with the
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2.2 Details of the K-means based model

temporal dimension by concatenating the T7 temporal columns in the patch block within
the current color channel. We could not find consensus in literature on the feasibility and
process of combining the temporal and the color dimension in Bag of Words settings. We
however observed that whitening the raw pixels contained in the patch blocks in this
arrangement effectively leads to temporal decorrelation. Analogous to the importance of
spatial whitening in [Coates et al., 2011] we expect that the correct application of temporal
whitening is important as well.

Before entering the K-means unsupervised learning routine, the training patches were
flattened to a vector4, centred and PCA-whitened with ε = 0.1. In image data, ε leads
to slight smoothing and noise reduction. Note that [Coates et al., 2011] identified the
whitening step as crucial for a well-performing K-means image classification model; and
[Vinnikov and Shalev-Shwartz, 2014] as one crucial processing step leading to ICA-like
filters.

To align the resulting feature vector with the BOLD sampling rate TR = 2sec, the feature
vectors needed to be downsampled. For this reason and for comparability, we again adopted
the routine from [Nishimoto et al., 2011], where the feature vectors sampled at 15Hz where
downsampled by taking the average over TR = 2sec.

Due to the concatenation of the stimulus video clips, specific sequence blending prototypes
are learned, usually switching color filters. We did not remove patches with such transitions
from the randomly selected training set since we regard them as a visual feature that could
be reflected in the BOLD signal.

2.2.3 Feature extraction and pooling

The prototypes learned for the first K-means layer are the basis for extracting features
from the actual stimulus data. For feature extraction, each possible spatio-temporal patch
with a step size (stride) of s = 2 pixels is extracted from every frame for each of the 3 patch
scales. K = 1000 continuous scalar feature values are extracted from each of these patches
by applying the soft K-means feature extraction described in section 2.2.4. Summation
pooling is applied to the resulting patch-wise feature vectors in 5 circular pooling regions
(described in section 2.2.5), still individually for each scale. This results in 5000 features for
each of the 3 scales, which are concatenated to form the feature vectors in the first layer
for each frame. To avoid overfitting due to the high feature dimension in the first layer,
predictions are done separately for the three scales, and correlation values are combined5.
The complete feature extraction process is illustrated in Figure 2.3.

4Flattening was done in MATLAB’s column major order.
5This combination was based on the training set prediction results: For predicting a specific voxel i we took
the 5000 features of the single scale that resulted in the best correlation in the training set. However,
we also found that the correlation results of the scale-wise predictions and the prediction based on
the full (concatenated) Layer 1 feature vector of 15000 features were effectively equal. In section 3.5.3
we present results that indicate a spatial distribution of the different scales on the cortex, which is a
possible explanation for this equality.
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2 Materials and Methods

Figure 2.3: Feature extraction and pooling in the first layer. From the raw
pixel input all possible patches are used for feature extraction, forming
one Ndim = 1000 feature vector for every patch. Subsequently, spatial
pooling over these feature vectors reduces the feature dimension and
introduces invariance and smoothing.

2.2.4 K-means (triangle) feature extraction

A hard K-means cluster assignment would assign the closest centroid to each of the patch
blocks, leading to a binary representation. Here we apply the same soft K-means feature
extraction that was used in [Coates et al., 2011]. This feature extraction is performed for
every centroid and leads to K real-valued features for every patch block.

fk(x) = max(0, d̄− dk) (2.3)

d̄ is the mean distance of the patch block x to all K prototypes pk. dk = ||x − pk||2 is
the quadratic euclidean distance used by the standard K-means algorithm. The result of
this feature extraction method is one feature vector for every patch. Every feature vector
consists of K continuous values, i.e. one distance to every prototype. If the distance between
the considered patch and one of the K prototypes is larger than the average distance of the
patch to all prototypes, the distance is not considered by setting the feature value to 0.

In [Coates et al., 2011], this method was called K-means (triangle) feature extraction. Next
to whitening, the fact that this feature extraction method is leading to continuous feature
values was their second reason for the applicability of this feature representation to their
classification problem. In comparison, hard K-means assignment has been leading to lower
label prediction performance.

2.2.5 Retinotopic summation pooling

Spatial pooling on a regular grid is likely not applicable to biological encoding models due
to the retinotopical structure in the early visual system. The mapping of the visual field to
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2.2 Details of the K-means based model

(a) The pooling structure used in this thesis. (b) Another tested pooling structure that would
have lead to too many features.

Figure 2.4: Pooling regions used to approximate retinotopy. After the first
layer feature extraction, the feature responses are summed over each of
the areas shown in this illustration.

the retinotopically organized cortex area is contorted; the fovea region being magnified on
the cortex in comparison to the peripheral visual regions (see Figure 2.5). The grid used
for pooling should reflect this structure and either single out or over-represent the small
foveal region.

While fixation instructions were given during the experiment, it is likely that the subjects
could not follow them over the whole course of an recording session. This however will lead
to noise with any encoding model based on the raw pixel stimulus input.

The pooling field structure used for this project is illustrated in Figure 2.4a. We have
attempted to use more detailed pooling regions (e.g. the one in 2.4b), however given that
every additional pooling region increases the feature dimension by K the possible total
number of pooling regions is limited. We additionally account for the overrepresentation of
the foveal region by including it in every subfield in Layer 1 receptive field learning (see
section 2.2.6).

Figure 2.5: Estimation of the representation of the human visual field in
the visual cortex from [Horton, 2006]. The left image shows the striate
cortex folded up at the calcarine sulcus. The right image shows the
location of the coordinates from the circular visual field (represented as
in coordinates from a stereographic projection). The black circle is the
blind spot. What we can learn from this illustration is that the foveal
region is overrepresented in the cortex in comparison to the peripheral
areas.
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2 Materials and Methods

The summed filter responses for all pooling fields and patch sizes are concatenated to form
the first layer feature vector for each frame. Within this concatenated feature vector it is
possible to identify the original pooling regions, which allows preserving spatial information
in the higher layers.

2.2.6 Receptive field learning

For every round of unsupervised prototype learning we need to extract data patches from
the training data as a basis. The prototype learning in the first layer is based on pixel
patches, which employ temporal and spatial coherence. Feature patches in each higher
layer however can not be defined as to have spatial coherence because – due to prototype
learning and pooling – they are randomly arranged in the K fields of the feature vector. To
solve the problem of extracting new coherent data patches, we used receptive field learning
as it was presented in [Coates and Ng, 2011] and [Coates and Ng, 2012]:

Receptive field learning will greedily form R sets of T features with pairwise similar activity
from the previous feature vectors. Here each new receptive field is based on one single
feature randomly chosen (and not chosen before) from the feature vector6.

Equation 2.4 expresses the pairwise similarity heuristic. dj and dk are two features in the
feature matrix, i.e. distances to a certain prototype across time.

c[dj , dk] = corr(d2j , d
2
k) =

∑
f d

(f)2

j d
(f)2

k − 1√∑
f (d

(f)4

j − 1)
∑

f (d
(f)4

k − 1)
(2.4)

This is in fact the correlation coefficient between the energies (squared responses) of
the whitened data, where E[z] = 0 and cov(z) = E[zzT ] = I. Equation 2.5 is this same
correlation expressed with expected values. Due to equality of I and the expectation of the
outer product E[zzT ], the expectations of the squared responses in equation 2.5 equal 1 as
well.

corr(d2j , d
2
k) =

E[d2kd
2
j ]− E[d2k]E[d2j ]√

(E[d4k]− (E[d2k])
2)(E[d4j ]− (E[d2j ])

2)
(2.5)

The process used for forming the receptive fields is expressed in algorithm 2. We use
T = 200 as the receptive field size, i.e. the new "patch size". Next to changing this number
having no apparent effect during our own test rounds, [Coates and Ng, 2011] stated that
this value does not have a large influence on the result.

6Due to the random selection of the initial feature there is still the possibility that equal or almost equal
receptive fields are extracted. Among the R = 20 that were trained in each session this however occurred
infrequently (once or twice per training session).
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2.2 Details of the K-means based model

Data: Training set feature matrix X with feature columns dk = dk1 ...dk3600 (with
k ∈ K).

Result: NR receptive fields R (set of feature indices)
Compute the pairwise similarity matrix c(X) ;
for NR iterations do

Select a random seed feature dr from c with r ∈ K ;
dsort ← dr sorted in descending order ;
Rn = argdr(dsort1 ... dsortT );

end
Algorithm 2: Extraction of receptive fields. Note that a receptive field R is a collection
of feature indices. argdr will therefore take the corresponding original indices from dr.

Receptive field learning in detail We would like to provide more details on the receptive
field learning procedure. In order to analyse an encoding model for the visual system, we
considered the preservation of spatial information across layers as beneficial. Therefore, in
general, receptive fields are learned within the pooling regions, and features are extracted
based on the same receptive fields within the respective pooling region. The feature sets
from all pooling regions are concatenated to form the final feature vector for one layer.

Layer 1 uses four peripheral and one central foveal pooling region (see the pooling regions in
Figure 2.4). All higher levels use four pooling regions. In Layer 1 we decided to concatenate
the four peripheral regions with the foveal region for learning each of the four receptive
field sets. This increases the impact of the foveal region where the subjects fixated during
the experiment. Note that in Layer 1 it was also necessary to account for the three different
patch scales.

After receptive fields have been extracted for every pooling region, sets of training patches
are created. This is done by randomly selecting a receptive field for every frame and
extracting the corresponding feature value patch until the desired number of patches is
collected. These receptive-field specific patch vectors are then concatenated, and K-means
prototypes are trained over all collected patches. Within this procedure it is possible to use
the same K-means prototypes for all pooling regions since the centroid indices underlying
the Rs match across receptive fields and pooling regions.

Whitening transformations are applied to the feature data used for receptive field learning
and on the training patches that are used in the K-means prototype learning. Leaving out
each of these whitening steps has lead to decreasing predictive power of the feature sets.
[Coates and Ng, 2011] described the linear decorrelation of the training patch vector as
one precondition for the receptive field learning to pick up higher-order dependencies.
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2 Materials and Methods

Figure 2.6: Linear model for predicting the BOLD signal in a single voxel i
in response to feature vectors extracted from the video stimuli.

2.3 Evaluation methods

2.3.1 Reference models

The K-means-based unsupervised model is partly evaluated by comparing its results to
two handcrafted models, which are the Motion-Energy model from [Nishimoto et al., 2011]
and a word2vec-based feature space similar to the category model from [Huth et al., 2012].
Their detailed descriptions can be found in the Appendix sections A.1 for the Motion
Energy model and A.2 for the Semantic features.

2.3.2 Ridge regression model

For linearly predicting the BOLD signal on top of the feature vectors the method described
in [Nishimoto et al., 2011] and its supplementary material is used. However L2-regularized
ridge regression is used instead of the L1-regularized LASSO regression used in the original
publication. Refer to Figure 2.6 for an illustration of the process and the structure of the
feature and weight vectors. In words, the process is structured as follows:

1. The temporal sequence of feature vectors is down-sampled to the TR of 2sec by
averaging over the features in each sampling window.

2. The feature signals are shifted for delays of 1, 2 and 3 seconds and then concatenated
to form the delayed stimulus matrix.

3. An equivalent delayed matrix exists for the regression weights. The hemodynamic
response function is thus learned implicitly from the BOLD responses within the two
delayed matrices instead of using an explicit HRF model. After learning the model
via ridge regression, one predictive model (weight set i) exists for the BOLD signal
in every voxel i.
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4. Ridge regression is applied to learn the weights i that lead to the BOLD training data
prediction. The regularization parameter λ is determined via 10-fold cross-validation,
i.e. iterating over 10 regularization sets each consisting of 10% of the training data.

The model performance is measured by its mean prediction accuracy on the test set, which
is defined as the z-transformed (Fisher’s Z-transformation7) Pearson’s linear correlation
coefficient between the predicted and observed BOLD signals within-voxels. Note that
we do not expect a homogeneous distribution of predictability over all voxels. What is
expected is that a part of the voxels, e.g. in a subset of a ROI can be predicted very well
with a specific feature set (i.e. a set of features matching the cortical representation), while
the remaining voxels’ activity can not be predicted. We therefore will need to look at the
resulting correlation data from different perspectives in the results section.

Linearizing encoding models Using a linear model to fit the representation to the
BOLD signal is based on the assumption that there is a simple relationship between
the feature maps and the voxel activity. The encoding model should capture all non-
linearities in itself and by careful design of the researcher, i.e. by intention. More powerful
predictors would introduce new non-linearities that are either difficult to uncover, describe
or interpret, hiding potentially crucial information about the encoding process. A powerful
predictor might be capable of predicting any relationship between the raw pixels of the
input space and the activity space, but could not be analysed or designed well in terms of
understanding brain activity. In literature on encoding models this idea is referred to as
forming a linearizing feature space. Refer to [Naselaris et al., 2011] for detailed information
on this framework.

Evaluation is done on a single-subject basis, following the methodologies in
[Nishimoto et al., 2011] and [Huth et al., 2012]. Here mass-univariate8 models are trained
for all feature data sets, within different ROIs and using the full training stimulus data.
The ROIs are derived from functional localization experiments in [Huth et al., 2012].

Visual ROIs While sensorimotor and auditory ROIs have been mapped during the exper-
iment, we have not used them during most evaluations. We call the following subselection
of all defined ROIs visual ROIs : EBA, FBA, FEF, FFA, FO, IFSFP, IPS, LO, MTp, OFA,
PPA, RSC, TOS, V1, V2, V3, V3A, V3B, V4, V7, VO, pSTS.

7We chose to apply Fisher’s Z-transformation f(r) = 1
2
ln 1+r

1−r
to the correlations r because Pearson’s

correlation values are not interval spaced and therefore not additive, which is a prerequisite for comparing
them against each other or for taking their mean value. For comparability, the final evaluation score
for a ROI is then its Fisher-weighted mean correlation coefficient, including the application of the
inverse transformation. Voxel correlations are left in the Fisher-Z-transformed form for comparability
however if not specified otherwise. This transformation had not been applied in [Nishimoto et al., 2011],
which potentially had lead to a lower influence of the more meaningful higher correlated voxels in their
specified average correlations.

8Mass-univariate refers to analyzing every voxel separately here, in our case to training one regression
model for every voxel.
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2.3.3 RDE noise estimation

We use Relevant Dimensionality Estimation (RDE) as described in [Braun et al., 2008] to
study the noise of the prediction task in the light of a specific representation (feature set
or model) without training a ridge regression model. This method is also applicable for
small sample sizes, which is beneficial in our case since there is only a limited number of
samples recorded for every voxel.

[Braun et al., 2008] could show that the feature dimensions relevant for the learning problem
are often contained in the first few principal components, and that a kernel suitable for
the learning problem is capable of exploiting the data efficiently. Based on this insight they
presented a simple procedure for finding the relevant number of dimensions (i.e. the number
of relevant kernel PCA components) for a specific learning problem. This can be applied
e.g. to reducing the dimensionality adequately and to studying appropriate kernels. In
subsequent publications, RDE was used for studying deep neural network representations
in [Montavon, 2013] and – in a similar setting to ours – comparing brain representations
with deep neural network layers in [Cadieu et al., 2014].

Here we mainly make use of noise estimation, which is a diagnostic tool derived from RDE.
Note that this is performed both in the light of a specific feature set (e.g. the Motion
Energy features or a single layer of the K-means routine) and in the in the light of a specific
kernel, which in our case is the Gaussian Kernel with an adaptive scale parameter σ. Our
assumption when using this method is that when using different feature sets for building
the kernel we should still see similar distributions of well-predictable and unpredictable
(noisy) voxels that we saw in the regression model.

We now briefly review the RDE process from [Braun et al., 2008] applied to our framework
of a mass-univariate learning problem: Our training dataset Y ∈ R consist of 3600 samples
of the BOLD signal for each individual voxel. For deriving the Kernel matrix K we use
the feature data X ∈ R with the dimensionality Ndim. It is important to note that we do
not use the original feature and signal data vectors here, but their circshifted version,
described previously in section 2.3.2. Here once more this is in order to account for the
temporal shifts introduced by the haemodynamic response function.

Kernel PCA refers to an extension of Principal Component Analyses with Kernel methods.
We start by describing its typical routine as originally described in [Schölkopf et al., 1998]
and [Mika et al., 1998]. We decided to use a Gaussian kernel (Equation 2.6) since this
results in a full-rank Kernel matrix.

Kj,k = exp

(
−(dj − dk)2)

σscale E[(dj − dk)2]

)
(2.6)

As we see above, the scaling parameter σ = σscale E[(dj − dk)2] is essentially based on
the expected value of the pairwise distances. σscale is selected from 0.1, 0.5, 0.9 by taking
the σscale leading to the lowest mean noise 1

Ndim−d
∑Ndim

i=d+1 z
2
i . How to determine Zi is
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Unexplained voxel (correlation = 0.1245)

Figure 2.7: Example kPCA coefficients for the Motion Energy features for one
well-explained and one unexplained voxel from the mass-univariate RDE.
Data of the first recording session is used for this example.

described subsequently. After K has been derived, we apply eigendecomposition to obtain
the eigenvectors u and eigenvalues λ.

Ku = λu (2.7)

[Braun et al., 2008] proceed by estimating the relevant dimensionality with two different
methods. For our own analysis we make use of the noise assessment that is obtained with
their parametric model. For this method we only need the spectrum coefficients z, which
are the dot products between the eigenvectors u1, . . . , um and the BOLD signal of a specific
voxel i yi ∈ Y .

zm = uTmyi (2.8)

The coefficients can be understood as to which extend the principal component um reflects
the measured BOLD signal yi of a specific voxel. Note that while K only exists for a specific
feature set, these coefficient spectra exist for every voxel due to our mass-univariate model.
Figure 2.7 shows the kPCA coefficients zm for one well-explainable and one unexplained
example voxel in the light of the Motion Energy features and the Gaussian kernel.

The actual RDE uses the z to derive the relevant dimension and the noise with their
parametrised model, which is a Two-Component Model (TCM). Here [Braun et al., 2008]
observe that Y can be decomposed into a signal and a noise component, i.e. Y = G+N .
The noise N is always included as an evenly distributed noise floor while the signal G only
exists in the principal components arising above it. The idea of their TCM is to find a
cut-off point d between the coefficients that carry the signal (plus the noise floor) z1, . . . , zd
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and those that only carry the noise floor zd+1, . . . , zNdim
. This is done by modelling the

two parts of the coefficients with two Gaussians with zero mean and σ1 � σ2:

zi ∼

{
N (0, σ21) if 1 ≤ i ≤ d,
N (0, σ22) if d ≤ i ≤ n.

(2.9)

Incorporating our zi, we have σ21 = 1
d

∑d
i=1 z

2
i and σ22 = 1

n−d
∑n

i=d+1 z
2
i . From these

[Braun et al., 2008] find the zi and the desired cut-off parameter d with a maximum
likelihood estimation:

d = argmin
1≤d≤n

(− log l(d)) = argmin
1≤d≤n

(
d

n
log σ21 +

n− d
n

log σ22) (2.10)

The cut-off point d is used to estimate voxel-wise noise with Eq. 2.11.

noise =
1

Ndim − d

Ndim∑
i=d+1

z2i (2.11)

This has been mentioned in [Montavon, 2013] and is derived from a loss function between
the real Y and the denoising projection

∑d
i=1 uiu

T
i Y . The spectrum coefficients can be

related to this loss function as in equation 2.12. The noise levels from Equation 2.11 can
be understood as average error residuals.

e(d) = ||
d∑
i=1

uiu
T
i Y − Y ||2 =

Ndim∑
i=d+1

z2i (2.12)

As mentioned at the beginning of this section, one advantage of this method is that the
estimated dimensionality and noise are robust to the sample size. In brain signal analysis,
the number of samples is generally small and therefore likely to lead to an overfitted model.
This is essentially also the case for our hours-long single subject recordings, which is why
we decided to use this method to verify our ridge regression models.

One possible downside of this method is that the Gaussian Kernel might violate the
linearizing principle of encoding models (described above in section 2.3.2), i.e. by introducing
unintended non-linearities. In the case of our feature and sampling dimensions, a purely
linear kernel however would (apart from leading to RDE with normal PCA) not have been
full-rank as the Gaussian kernel is. We decided to use the Gaussian Kernel and therefore
trade the full-rank property for this possible downside.

2.3.4 Representational dissimilarity

Representational Dissimilarity Analysis is a simple method for comparing representations in
different domains introduced in [Kriegeskorte et al., 2008]. Representational Dissimilarity
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Matrices (RDMs) visualize which differences in stimulus conditions are detected by a
modality. This is done by plotting their differences (measured with any distance metric
or correlation) in matrix shape. This is intended to allow comparisons between different
measurement modalities, ROIs and with different feature sets.

In the case of this experiment, the RDMs for a ROI or feature set show the sampling
points of the test set in time as stimuli on their axes. The difference between the stimulus
representations is estimated by applying the inverted Gaussian Kernel function without
σ-adaptation between each pair of representation vectors of sampling points in the stimulus
video:

RDMj,k = 1− exp

(
−(dj − dk)2)
E[(dj − dk)2]

)
(2.13)

Figure 2.8 shows two example representational similarity matrices for the test data set our
single subject. Note that the axes represent the sampling points in time. This evaluation
method is not feasible for the training dataset, where the noise inherent in the single
recording prevents the emergence of meaningful RDM structures. The resampling of the
test data set leads to clean structures arising in the RDMs. Note that meaningful RDM
structures are only identified by mere looking at the RDMs.

(a) Representational Dissimilarity of the test
stimulus set in a specific ROI.

(b) Representation Dissimilarity of the test
stimulus set in a specific feature set.

Figure 2.8: Example Representational Dissimilarity Matrices for the first
recording session of the test set. Note that the RDMs also reveal the
slight shift caused by the haemodynamic response function in the BOLD
signal (here in V4).
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For quantifying the comparison of RDMs, often their triangular forms are simply correlated.
We avoid this due to discussions about the uncertainty about what can be claimed by
correlating correlations (or distances). We instead use them solely for visualization. Note
that since we used the Gaussian Kernel function the RDMs also visually represent the
(temporally sorted) Kernel matrices from Relevant Dimensionality Estimation.
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3 Results and Discussion

In this section we are evaluating the models visually and quantitatively for a single subject.
We focus on the capabilities of the K-means model, and compare the results to the Motion
Energy and Semantic features.

3.1 Voxel predictability over the cortex
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Figure 3.1: Prediction-activity correlations on a cortical flatmap for
Layers 1 and 3 of the K-means model. Yellow voxels can be pre-
dicted similarly well by each layer’s features. These flatmaps show the
left and the right hemisphere, where the central regions correspond to
the occipital lobes.

The RGB channel figures in this section show the distribution of the voxel predictability
over the cortex in proportion for different model choices. The Regions of Interest (ROIs)
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are identical to the ones defined in [Huth et al., 2012]. What we would expect from a
hierarchical encoding model of the visual system is a gradual transition from predicting the
lower visual cortex areas with the lower layer encoding model features to predicting higher
order cortical areas with the higher layers. The optimum would be a distribution similar to
Figure 3.2, which shows a clear distinction between the lower visual system covered by the
Motion Energy model and the higher order visual areas covered by the Semantic features.

What Figure 3.1 mainly demonstrates is that the magnitude of voxels can be predicted
similarly well by both K-means Layer 1 and Layer 3, which is visible from the large
proportion of mixed-color (here: yellow) voxels. A tint towards either red or green indicates
that a voxel can be predicted best with the respective layer. While each of the layers reaches
a slightly better predictability for some of the visual areas, these effect differences are weak.
However, they are also consistent for some areas, and not random. Every layer is capable of
mainly predicting visual system-related voxels and does not cover random fluctuations over
the cortex. This can also be seen in Figure 3.3, which compares the first three K-means
Layers. What we also can conclude from Figures 3.1 and 3.3 is that the K-means encoding
and prediction routines taken together are generally capable of predicting visual system
activity.
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Figure 3.2: Prediction-activity correlations for the Motion Energy features
and the word2vec Semantic features.
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3.1 Voxel predictability over the cortex

It is however obvious when comparing to Figure 3.2 that the hand-crafted Motion Energy
and Semantic features are clearly superior to our completely unsupervised features. While
the early visual cortex coverage of the K-means model is apparently resembling that
of the Motion Energy features, the overall effect sizes are smaller. The transition into
intermediate and higher visual cortex areas is mediocre. We will explore the predictive
power quantitatively in section 3.2.

See Figure 3.3 for an RGB comparison of the K-means Layers 1, 2 and 3. We again see
weak tints that indicate that a region can be predicted slightly better by one of the layers.
However, considering the whitish areas we also notice that these differences between the
predictive power of the three layers are only small.
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Figure 3.3: Prediction-activity correlations on a cortical flatmap for Layers
1, 2 and 3 of the K-means model. White voxels can be predicted
equally well by every layer’s features.

Session differences for higher layers and higher visual cortex areas The following section
should be viewed as speculative and as a possible starting point for new experiments. We
would like to point out that the full data was collected in three recording sessions with
one third of the training and test data presented on each day. We could observe that the
capability of the Layer 1 feature sets to predict visual activity improves when the full
training data from all sessions is used. We could not observe this for the higher layers,
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Figure 3.4: Differences between the three sessions when predicting with Layer
3 K-means features. Session 1: Red, Session 2: Green, Session 3: Blue.

however. Here, when the smaller training data set of an individual sessions is used, the
predictability and coverage of new voxels improves over diverse regions. Figure 3.4 shows
the differences between the models trained on individual sessions for our single subject.

This observation is unusual since less training data is used. The Semantic features lead to
the clean (green) distribution that we see in Figure 3.2 when predicting with the training
and test data of all sessions, but also show session-wise differences when predicting with
the data from each day. Session-wise differences also occur for the other subjects. We
have investigated this in-depth, but could not agree on a reason for this observation.
Possible explanations include overfitting: When using the data of the second session of our
single subject, many voxels outside of the visual system, especially in sensorimotor areas
can be explained. However in other subject’s and session’s data this does not occur for
sensorimotor activity. It is also possible that the higher K-means levels are only capable
of explaining very specific features that dominated certain sessions. Another explanation
could be strong attention modulation in the higher visual system: It has often been shown
that visual spatial attention strongly influences the response in different areas of the visual
system [Bressler et al., 2013]. But we must be careful with these last two assumptions since
they would be evidence for partial correctness of our unsupervised K-means model. In
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3.2 Voxel predictability in specific ROIs

our available experimental setting, results from the full data should be considered more
reliable.

While these effects appear interesting, we can only conclude that a new experiment would
be necessary to find an explanation for these differences. Such an experiment should cover
both attention effects and differences in stimulus contents. In our setting we could not
provide an answer on why these session differences occur.

3.2 Voxel predictability in specific ROIs

We would like to present quantitative results in this section. Figure 3.5 contains a complete
overview of the results for four layers of the K-means model in comparison to the Motion
Energy model and the Semantic features. Again, note that this is for a single subject. For
comparability the correlations have been made interval-scaled via Fisher’s Z-transformation.
For an impression of the different amounts of voxels in each ROI refer to Figure 3.6.

What is prominent for all voxel correlation distributions is that they are very broadly
scattered. This is due to the fact that not all voxels in a ROI can be explained equally well
by any model. Especially in the CORTEX distribution it is noticeable that the meaningfully
explainable voxels reside in a smaller distribution of outliers at the top. This however
matches our expectation since we would only expect subsets of features to match the
function of a subset of voxels. In Figure 3.5 it is also noticeable that the Motion Energy
model is capable of explaining some of the early visual cortex voxels very well, with
correlations up to 0.85.

We also see that the Motion Energy model generally outperforms the K-means and Semantic
features in the early visual cortex. In higher visual areas the K-means layers are often close
to the performance of the Motion Energy model, while the Semantic features outperform
both in some areas (e.g. FFA and EBA). In all other higher visual areas all models show
similar correlation distributions.

In the lower visual areas the distributions of the well-explaining models are generally
skewed towards high correlations, i.e. a higher proportion of voxels can be explained very
well. This can not be seen in the higher visual areas: While the distributions of EBA, FBA,
MTp, OFA and LO are skewed towards moderate correlations, those of e.g. FEF and IPS
are skewed towards near meaninglessness.

The progression of the median correlation when going deeper in the K-means hierarchy
shows different trends for different ROIs. For instance, there is a pure downwards trend in
V3B and VO; a downwards trend from Layer 1 and then equal predictive power of higher
layers in V2 and V3; and a Layer 3 upwards trend after a decline in EBA, IPS, MTp, FFA
and pSTS. Pure downwards trends could either mean that the predictive power of the
higher levels generally declines or that there is a specialization to a smaller subset of voxels
in the higher layers.
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3.2 Voxel predictability in specific ROIs

Strong downwards trends occur in the lower visual cortex areas. The upwards trends in
Layer 3 occur in intermediate and higher areas. For instance, EBA is possibly involved
in the perception of human body parts and form, while pSTS showed activity e.g. during
perceiving human body motion and faces [Vangeneugden et al., 2014].

A
1

A
C

E
B

A

FB
A

FE
F

FF
A

FO

IF
S

FP IP
S

LO

M
Tp

O
FA

P
P

A

R
S

C

TO
S V
1

V
2

V
3

V
3A V
3B V

4

V
7

V
O

pS
TS

0

120

240

359

479

599

718

838

958
Voxel assignments to models

all<0.3
L1
L2
L3
L4

Figure 3.6: Voxel assignments to different layers for moderate and higher
correlations, based on which layer’s features result in the best prediction-
activity correlation. The black area represents the number of voxels where
every layer’s predictions result in correlations lower than 0.3.

Focusing only on the K-means hierarchy, we would like to know whether higher layers cover
previously unexplained voxels, or whether they are capable of explaining certain voxel
regions better. Figure 3.6 shows how the voxels in visual system ROIs can be assigned to
each of the K-means layers. The differences between the best and second-best correlations
have been checked for statistical significance (95% confidence interval). The black area
contains voxels with lower than moderate correlations (lower than 0.3). The auditory areas
A1 and AC are included to allow comparison to areas not related to the visual system (i.e.
unexplainable ROIs). It is obvious that the Layer 1 features always cover most of the voxels
in every ROI except pSTS. However for the higher visual cortex areas, especially for pSTS,
EBA, MTp and IPS this assignment analysis shows that Layer 3 is capable of explaining a
moderate amount of voxels better than Layer 1. These areas also show upwards trends for
Layer 3 in Figure 3.5. The improvement in coverage reached by Layer 3 also matches the
comparative correlation results in section 3.1.

For an illustration of the actual distributions for some ROIs, refer to Figure 3.7. For com-
parability these correlations have again been transformed to an interval-scaled distribution
via Fisher’s Z-transformation. What could be seen in the statistics from Figure 3.5 is also
obvious here: Layer 1 is capable of explaining the lower visual cortex area V3 better and
with generally higher prediction-activity correlations. The higher visual area pSTS overall
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3 Results and Discussion

has lower correlations, but Layer 3 can explain the higher-correlating voxels slightly better.
In area IPS, for which higher K-means layers can predict a larger proportion of the voxels
better, the prediction-activity correlation is visibly skewed towards low correlations.
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Figure 3.7: Example distributions of prediction-activity correlations for K-
means Layers 1 and 3.

3.3 RDE noise for specific feature sets

The univariate ridge regression models are likely influenced by training parameters such as
the sampling size of the training data and the actual training procedure. We would like to
validate the ridge regression results from sections 3.1 and 3.2 with another procedure that
does not include training a model. For this we decided for estimating noise in the light of a
specific feature set based on Relevant Dimensionality Estimation. Refer to section 2.3.3 for
a description of the details. Note that we have preserved the mass-univariate structure of
the learning problem.

The noise levels are defined as the squared mean PCA coefficients zi∀i > dε, with dε = d+5,
where d is the relevant dimensionality for a specific voxel. We decided to add ε = 5 in order
to stabilize the average noise result by taking the average slightly above the actual relevant
dimensionality, avoiding the first coefficients that may still contain signal components not
covered by the Two-Component Model.

Figure 3.8 shows the noise values of all voxels in a cortical flatmap, averaged for the first
three K-means layers. For a clear visualization, the average noise values were inverted so
that voxels with high noise values appear within the blue color spectrum. We can see that
for most voxels in the early visual cortex there is a lower noise level than for the higher
regions, with small sections showing very low noise. We also can see that some regions that
could be predicted well before in the correlation flatmaps show low noise levels in light of
the K-means feature sets (e.g. V3A, EBA and pSTS). In general, the previous correlation
distribution is reflected in light of the K-means features.
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Figure 3.8: Mean inverted noise levels for K-means layers 1-3 on cortical
maps. Areas with low noise will appear on the yellow part of the spectrum.
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Figure 3.9: Inverted noise levels for motion energy and Semantic features
on cortical maps. Areas with low noise will appear on the yellow part
of the spectrum.

35



3 Results and Discussion

F
ig
u
re

3.
10

:
N
oi
se

le
ve
ls
fo
r
al
l
vo
xe
ls
in

li
gh

t
of

th
e
K
-m

ea
n
s
h
ie
ra
rc
hy

la
ye
rs
,
th
e
M
ot
io
n
E
n
er
gy

an
d
S
em

an
ti
c
fe
at
u
re
s.

Fo
r
ea
ch

vo
xe
ld

is
tr
ib
ut
io
n
th
is
sh
ow

s
th
e
m
ed
ia
n,

th
e
in
te
rq
ua

rt
ile

ra
ng

e,
th
e
up

pe
r
an

d
lo
w
er

qu
ar
ti
le
s
an

d
ou

tl
ie
rs
.N

ot
e

th
at

th
e
no

is
e
ax

is
is

in
ve
rt
ed
.

36



3.3 RDE noise for specific feature sets

As a comparison, Figure 3.9 shows the noise values in light of the Motion Energy and
Semantic features. Here we notice distinct low noise regions when comparing the flatmaps
of the two models. In the early visual cortex it is noticeable how there is less noise in light of
the Motion Energy features, while the Semantic features cover higher regions. In comparison
to the K-means features, in light of the Motion Energy features substantially less noise is
present over the visual system ROIs. Seeing the Motion Energy noise distribution with
many low noise voxels we can also assume that the predictive power of the state-of-the art
model is superior to that of the K-means features.

In Figure 3.10 we compare the noise levels for specific ROIs. Note that the noise axis has
been inverted so that voxels with the lowest noise levels are at the top. The voxels in all
ROIs have a similar maximum noise around 1.0.

Similar to the correlations from Figure 3.5, the Motion Energy features generally show
their lowest noise in the early visual cortex areas, while the Semantic features show lower
noise in some of the intermediate and higher areas. The division of the predictive power
into early and intermediate / higher visual cortex areas that we saw in 3.5 are reflected in
the noise for the reference models. While this divide (that reflects the correlation results)
in principle also exists in light of the K-means features, when following the noise median
trends we see different distributions than when following the correlations. Going deeper
into the K-means hierarchy, the noise rises or stays at the same level in all areas except
V3B, TOS and LO.

Relevant Dimensionalities We also would like to compare the relevant dimensionalities
TCM has identified. With their magnitude we can analyse whether, through the lens of a
specific feature set, the voxel signal prediction is seen as a complex problem. In Figure 3.11
we can see that both the Motion Energy model and K-means Layer 1 lead to a majority
of voxels explainable with low relevant dimensionalities. The Motion Energy model also
divides the voxels into two sets, one that can be explained with a low dimensionality and
another that is either too complex or unexplainable with its features. In general, these
two feature sets appear suitable for modelling the responses of specific voxels, which is
what we would expect from an encoding model. In comparison, for K-means Layer 3
and the Semantic features the necessary dimensionalities are also low for a subset of the
voxels. However, in the first few histogram bins we also see that a lot of voxels are only
explainable with more complex dimensionalities. There is no divide between the voxel sets
that is similar to that of K-means Layer 1 and the Motion Energy features. We know from
the correlation results before that the Semantic features can generally explain voxels in
intermediate and higher order visual areas better, while lower visual cortex voxels have
lower or no correlations with the predictions of the linear model. Therefore we would expect
that for the Semantic features the voxels with higher Relevant Dimensionalities reside in
the lower visual areas. K-means Layer 3 however also explains many voxels in the lower
visual cortex areas, while not being able to explain those areas that the Semantic features
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Figure 3.11: Histograms of Relevant Dimensionality for all recorded voxels and
for different feature sets.

can explain. Fewer low relevant dimensionalities for Layer 3 are another sign for its lower
predictive power.

Figure 3.12 shows the mean cumulative sum over all zm-based squared noise levels in all
visual ROI voxels. A constant noise floor is reached as soon as the graphs become linear
with a constant slope. Before arriving at this constant noise level, the mean cumulative
sums show differences in their gradients. The models with the largest mean coefficients
zm for the early d – here Motion Energy and K-means Layer 1 – are those that show the
steepest gradient. For them either the correlation of the BOLD signal y with the principal
components (expressed by the coefficients for small d) is larger than for other models, or
the relevant dimensionality is small and they arrive at the constant noise level faster. In
either case the high average levels of the cumulative sums for these two models indicate
that large amounts of voxels in the visual system show the steep gradient. It also indicates
that their average predictive power for visual system voxels is likely higher than that of
the other models.

In comparison to K-means Layer 2 and Layer 3, the Semantic features also show a steep
slope for small d, however they lead to lower mean coefficient levels than e.g. the Motion
Energy features. This likely reflects how they can mainly explain a smaller amount of
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Figure 3.12: Cumulative noise spectra for all models over all visual ROIs.
This shows the mean cumulative sum over the squared coefficients for a
sub-selection of d. Note that this does not visualize the high variance
for these values among the voxels in the mass-univariate RDE.

voxels well (i.e. the higher visual system areas). This might also be the case for Layer 2
and 3, but their smaller slope at the beginning indicates that their relevant dimension is
high or that the principal components of their Kernel matrices don’t correlate well (and
early) with the voxel-wise BOLD signal.

3.4 RDMs for specific ROIs and models

Figure 3.13 shows the RDMs for the models K-means Layer 1, Motion Energy and Semantic
features, as well as exemplary representations in specific ROIs. To get an impression of the
contents of the stimulus data at a subselection of the analysed time points, see Figure 3.14.
RDMs can only be provided for the resampled test set. Noise dominated the visualization
when using the single recording sample of the full training set. The RDMs in this section
are used for visualizing the representations and for their qualitative discussion. While it
would be possible to provide quantitative results by correlating RDMs with each other, it
is unclear whether this is a valid criterion. We therefore decided to exclude quantitative
results from the discussion.

Overall the method has lead to heterogeneous representations within the different ROIs
and feature sets, which can also be seen from Figure 3.13. The strong dissimilarity among
the Semantic features is due to the manual labelling of the diverse objects appearing in
the scenes. Figure 3.15 shows RDMs for Layer 1 and Layer 3 of the K-means model. The
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3 Results and Discussion

Figure 3.13: Representational Dissimilarity in the validation sets for two
feature sets and four ROIs. 0.0 is similar and 1.0 dissimilar.
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3.4 RDMs for specific ROIs and models

Figure 3.14: Exemplary content of the validation set presented during a subs-
election of sampling points.

higher level training either leads to an overall loss of information or to an intensification of
some detected properties (or both). It is possible that what is detected in the higher levels
is a differentiation between animate and inanimate objects, or moving and static scenes
respectively.

Figure 3.15: Representational dissimilarity for L1 and L3 for the first record-
ing session of the test data.

We explore this more deeply by exemplary investigation of the content of scenes in the first
recording session from Figure 3.15. The most prominent feature in the K-means RDMs
are highly dissimilar sampling points, visible as coherently bright stripes. These also occur
across the Motion Energy model and in many ROIs, such as in LO and FFA. Looking at
the stimulus content in, for instance, sampling point 20, we can see that it consists of an
urban beach scene, where there is movement only in the lower half of the frames. Around
60, a scene of a free climber falling into an abyss was presented, with large red or black
patches. These scenes have similar representations in both Layer 1 and Layer 3. At 50,
Layer 3 detects a scene highly dissimilar to all other stimuli. In the stimulus data this is a
short static sequence of the Hiroshima Peace Memorial silhouette at sunset. Within the
test set, these dissimilar areas are also unique in their structural organization, since most
scenes show more feature-rich content across the subpatches than those large coherently
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3 Results and Discussion

coloured frames presented here. Layer 3 appears to mainly differentiate between scenes
with overall rich features and those with coherent patches, and scenes with widely spread
rich movement and those that only contain movement in subpatches.

For investigating similar patches, we would like to focus on sampling points where a
coherently dissimilar feature set is interrupted by sections of similarity. We first notice that
these are mainly picked up by Layer 1. Around 40, there is a long scene of a convoy moving
towards the static camera, where the motion mainly consists of flags slowly moving in the
wind. A feature set with close distance to this can be found at 28, which shows a group of
women talking, also recorded with a static camera. Another feature set similar to the one
at 40 is a recording of a polar landscape occurring around 73, over which the camera is
panning slowly. The scene at 28 continues with frequent cuts to other scenes of persons.
Similar to its representation is 58, which shows a climbing scene with frequent cuts. The
actual image content of all these scenes is highly dissimilar to each other, which is possibly
reflected in the distances all being above 0.3 in the similarity spectra. Layer 1 appears to
detect motion differences, differences in the actual image content, and frequent cuts.
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Figure 3.16: Distribution of scale-wise feature sets that account for maxi-
mum predictability per voxel. Only voxels with correlations > 0.4
are shown.
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3.5 Notes on other training outcomes

3.5 Notes on other training outcomes

This section shortly illustrates the outcome of the unsupervised learning process with
example prototypes and receptive fields. It also shows how the three K-means Layer 1
centroid sizes are distributed over the early visual cortex.

3.5.1 Scale-wise predictions in layer 1

Here we shortly analyse whether the differently sized prototypes from Layer 1 also lead
to different predictability distributions among the voxels. Figure 3.16 shows how the
three scales S6× S6× T7, S10× S10× T7 and S14× S14× T7 are distributed over the
well-predictable cortical areas: A mass-univariate ridge regression model has been trained
with the feature sets of each scale. The figure shows for every voxel which of the feature
sets leads to the best prediction for our single subject.

Note that while these distributions appear to exhibit structure, the differences between
the distributions are small nevertheless. For our single subject, the differences between the
distributions of voxel wise-correlations S6× S6× T7 / S10× S10× T7 and S6× S6× T7

/ S14 × S14 × T7 are significant with p � 0.05. The difference between distributions
S10× S10× T7 / S14× S14× T7 is not significant (p = 0.0733). Choosing a larger patch
size than S14× S14× T7 might have been reasonable here, but was avoided due to the
increased computational load during feature extraction.

3.5.2 Prototypes

(a) S6× S6× T7 (b) S10× S10× T7 (c) S14× S14× T7

Figure 3.17: Example filters for all prototype sizes in K-means layer 1. The
actual patch sizes do not match these print sizes.

Figures 3.17a, 3.17b, 3.17c show example centroids learned for the three spatial scales
on the temporal RGB patches. The centroids were selected as to show specific properties
often occurring when learning in this unsupervised fashion, but do not reflect the overall
distribution of the filters. Multiple runs of the K-means based prototype learning resulted
in different centroid arrangements and some difference in centroids. Over multiple training
rounds no major change in model performance could be seen, but many similar or equal
centroids could be observed.
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3 Results and Discussion

Figure 3.18: Two examples for learned receptive fields in Layer 2. Shown
are the top 10 correlating centroids of the receptive fields. Note that
receptive fields are learned over all scales.

3.5.3 Receptive fields

Figure 3.18 shows the top correlated features in two example receptive fields of the
RN = 4× 20 learned receptive fields in Layer 2. Note that in Layer 2 we combined each
outer pooling region with the fovea pooling region for learning the receptive fields. The
learning process was described in section 2.2.6.
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4 Further Discussion

In this section we will discuss biological interpretations, possible limitations of the K-means
model and also would like to illustrate future potential of the deep unsupervised encoding
approach.

4.1 Biological interpretation

When developing an encoding model for the visual system, it is desirable that the various
steps are backed up with knowledge about biological functions. The K-means model features
a couple of biologically properties that we would like to briefly describe in this section.

Competitive Hebbian Learning Prototype learning with K-means can be seen and ex-
pressed as competitive Hebbian learning. Using the simplified description for Hebbian
learning, we can see the cluster assignment as fire together and the cluster relocation
as wire together. The winner-takes-all aspect in prototype learning is the competitive
property.

Whitening As mentioned before, the whitening transformation of the input patches
is crucial for the classification performance of this soft K-means variant (shown
in [Coates et al., 2011], proof in [Vinnikov and Shalev-Shwartz, 2014]). In research
about the visual system, there is belief and experimental evidence that the center-
surround cell structure in the retina is adapted to the statistical properties of
natural scenes and carries out a whitening transformation before forwarding the
visual information (now less redundant) into the LGN and the occipital lobe
[Daniel J. Graham, 2006].

Neural network implementation It is possible to implement K-means in a neural
network. For the specific variant of soft K-means used in this thesis, see
[Pehlevan and Chklovskii, 2015].

Simplicity If evolution has found and implemented algorithms in biological systems, then
it is likely that these algorithms rely on large-scale effects emerging from the interplay
of small components. This interplay should be robust against external perturbations
and not highly vulnerable to the chaotic properties of dynamical systems. K-means
is a very basic algorithm, essentially relying on two simple steps. We propose that
the possibility of the biological implementation of variants of it should be considered
and further studied.
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4 Further Discussion

Although these properties exist it should be noted that the K-means model can at most
represent an oversimplified version of realistic neural processes. Nevertheless, discussions
like this may contribute to the search for a general learning algorithm in natural learning
systems like the brain.

4.2 Limitations of K-means-based deep encoding

We briefly discuss the problems and limitations we see in using the presented K-means
model as an encoding model.

Applicability for videos The original model by [Coates et al., 2011] was studied on
datasets of static images, but not on video datasets. The extension of visual feature
learning to the temporal dimension is not straight-forward, and most efficient video
feature learning networks have been published only recently (e.g. at NIPS 2014 with
[Donahue et al., 2014]). Better temporal modelling can be achieved with e.g. LSTM
blocks, which we had not considered when developing the model.

Pooling strategy The summation pooling over the visual field in the first K-means
layer uses only 5 regions. Higher numbers or a block-grid design as in
[Nishimoto et al., 2011] would quickly lead to extreme feature dimensions since every
new region increases feature dimension by K. In [Coates et al., 2011] 4 pooling
regions had been used. Due to the spatial representation of visual information in the
cortex, more fine-grained pooling fields are advantageous for visual encoding models.
We consider the lack of them a huge downside of our model.

Initial clusters The prototypes in the K-means routine were initialized with a random data
point in [Coates et al., 2011]. While in the beginning we shortly tested other routines,
we continued with their original initialization in the course of the project since we
could not observe major changes in the predictive power. However, since one of the
well-known downsides of K-means is the stability of the prototype solutions, if this
model should be studied further one should explore whether different initialization
routines influence the predictive power in detail.

Category coverage Our model does not explain most of the higher-level voxels that are
explained by the Semantic features. It is questionable whether the description of
categories (or ROIs covering object categories such as FFA) can be achieved with
a purely unsupervised model. We had decided to keep the complexity low and try
the purely unsupervised approach of [Coates et al., 2011] and [Coates and Ng, 2012].
Nevertheless, possible extensions include adding a supervised stage or a layer where
unsupervised category learning occurs.

Encoding model selection The parameters KN and R showed influence on the predictive
performance of the model. Therefore a grid search for these parameters had been
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performed both with using the same KN and R for each level and with their layer-
wise selection based on their predictive performance. We discontinued the layer-wise
parameter selection when it became apparent that an informed choice could not
be made valid from a machine learning point of view. As an example, during the
layer-wise parameter selection one could have selected the parameters so that the
number of newly explained voxels is maximized. This choice, however, would have
relied on a performance measurement acquired from the test set, which would have
lead into overfitting and would have violated the idea behind using such a test set.
Nonetheless layer-wise selection of the parameters would be preferable, and should
be used, if a valid selection routine can be found.

4.3 General Limitations

Small number of subjects Single-subject studies don’t intend to be representative for
a general public. A fully developed individual brain should be analysed, avoiding
new problems introduced in the preprocessing routines of multi-subjects studies in
fMRI. This of course has the consequence that the value of a scientific statement
may become arguable, and that only a limited number of subjects can be studied
comparatively in a single publication.

Dataset reuse The dataset and stimuli from [Nishimoto et al., 2011] recorded by the
Gallant lab have already been used for several years by various groups. Certainly,
when a large number of research groups working on encoding models rely on the
same single-subject datasets, one should view their results with caution until they
can be transferred to new datasets. Currently one candidate for a novel large-scale
multimodal stimulus dataset is being published at http://studyforrest.org/, but
so far (August 2015) only the pure audio stimulus recordings are completely available.

4.4 Potential of encoding based on representation learning

An in-depth and general introduction to the advantages and potential of encoding models can
be found in [Gallant et al., 2011]. In brief: The most important difference to conventional
predictive fMRI studies is that encoding models use a random set of stimuli showing natural
statistics, step back from stimulus labels, and extract features with a more generalizable
and bottom-up method such as Gabor wavelet-based edge extraction. Based on these
features they predict voxel activity in a specific cortical region of interest such as the visual
system. Decoding can be done directly by inverting the encoding model. In this section we
discuss the potential of deep encoding models more specifically.

Spatial organization of hierarchical representation Layer-wise prediction with different
feature sets makes it possible to study how complex representations in the brain
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gradually emerge, e.g. along the ventral and dorsal pathways. The goal would
be an association between the features in various layers and voxels over a large
cortical map. These associations between visual cortex regions and feature sets
could then be further compared to existing knowledge about the visual system.
Such visualizations could provide remarkable insight into what certain cortical
regions or voxels respond to. To further motivate such efforts it should be men-
tioned that the Deconvolutional Network introduced in [Zeiler et al., 2010] exhibited
third-layer representations strongly resembling the primal sketch tokens that David
Marr hypothesized in his theory about the visual system [Marr, 1982] (see Figure 4.1).

Figure 4.1: Representations in the third layer of a deconvolutional net-
work in comparison to Marr’s Place tokens. a) Place tokens from
Fig. 2-4 of Vision by David Marr. b) 3rd-level representations from
[Zeiler et al., 2010] (also the illustration source).

First level features are usually straight-forward to visualize. For higher layers, ad-
vanced deep neural network visualization techniques are required. Simple weighted
correlation-based visualization does not sufficiently explain what is happening
in a deep neural network. Such advanced methods are currently being investi-
gated by the machine learning community, with one notable recent example be-
ing [Zeiler and Fergus, 2013] who visualized the layers of [Krizhevsky et al., 2012]
with what is essentially a gradient ascent [Simonyan et al., 2013]. Also, for the
same purpose there has been research into inverting deep neural networks
[Mahendran and Vedaldi, 2014], [Dosovitskiy and Brox, 2015]. It is also possible to
analyse in detail the relevancy of structures in the input space for the predictions of
a specific voxel down to single pixels [Bach et al., 2015].

Perception reconstruction One useful property of encoding models is that a decoding
model is basically its inverted form. This is a property making them more powerful
than pure decoding models. It is not possible to do the reverse, i.e. it is not possible to
derive an encoding model from a decoding model. Since deep encoding models could
potentially provide visual descriptions of mid- and higher level processing stages,
research in reconstruction may strongly benefit from research in deep neural network
visualization. This is currently under investigation in several groups working with
deep encoding models. If more features than those represented in the striate cortex
can be explained, decoding of imagination and dreams might as well become possible.
Perception reconstruction is a promising area of research in itself: One can easily
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4.4 Potential of encoding based on representation learning

imagine further scientific or therapeutic applications of brain-reading methods. Such
reconstruction attempts also simply kindle scientific curiosity as an end in itself. Note
that the most advanced dream decoding algorithm so far algorithm could decode
dreams up to the level of object categories [Horikawa et al., 2013], and that so far
there where no successful attempts to actually reconstruct visual contents of dreams.
Aiming at reconstructing visually perceived stimuli perfectly using the BOLD signal
can be viewn as a data-driven engineering approach with a clear reference about
whether the model is correct. This also has the potential to lead to more insight into
the visual cortex and into properties of the BOLD signal itself.

Deep encoding and deep neural networks The recently investigated deep neural net-
works usually contain a label-based supervised stage at the end, which functions as
their prediction benchmark. Without such class prediction stages, due to the number
of parameters basically any representations could be learned during the unsupervised
stages. A different approach for improving the prediction performance of a deep
neural network while avoiding the complexity of the unsupervised learning outcome
could be to carefully fit the unsupervised learning stages to biological processing
stages. Such approaches would require a database of large-scale multi-subject data
under various conditions. We assume that investigating the capabilities of such a
biologically fitted unsupervised hierarchy is promising.

49





5 Conclusion

During this project, unsupervised features extracted from videos within a K-means-based
feature learning hierarchy were used to predict the BOLD signal in human visual areas
elicited in response to spatio-temporal stimuli. We could show that with this completely
unsupervised learning procedure a functioning encoding model for the lower visual cortex
areas can be created. We have seen that, in general, the unsupervised feature learning
approach is both capable of providing features that can predict brain activity, and can also
serve as a basis for the analysis of features preferred by specific cortical areas. We have
verified the ridge regression results with the help of Relevant Dimensionality Estimation
and investigated what the higher K-means levels possibly represent with Representational
Dissimilarity Matrices. While we presented the visual and quantitative results of a single
subject in this thesis, the single-subject data of the other recorded subjects has been
analysed within the project’s scope and has lead to similar comparative results for 4 of the
5 other subjects.

However, only few new voxels in higher and intermediate ROIs – mainly in pSTS, IPS,
MTp and EBA – can be explained by higher layers of the K-means hierarchy. While higher
levels identify abstract features, those features are not object categories, but broad and
unspecific image features such as strong differences in movement and large homogeneously
coloured areas. Also, the hand-crafted Motion Energy model and the manually labelled
Semantic features outperform the completely unsupervised feature hierarchy, and are highly
superior in the ability to distinguish between lower and higher visual cortex areas. With
our K-means model we could not find higher level representations that were similar to the
continuous semantic spaces that had been found before.

We expect that the main flaws of the higher K-means hierarchies reside in the pooling
strategy that is not rich in detail, in no suitable temporal learning in the higher layers and
in a lack of specific approaches to unsupervised category learning.

Generally, further studying deep encoding model approaches with unsupervised components
is promising. In principle, in this project we could show that also for spatio-temporal data
unsupervised approaches could help understanding the brain’s internal language. Further
insights into this language have the promising potential to lead to brain reading tools in
the future.
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A.1 Motion energy model

Motion energy features are one of the standard methods for describing low-level and
localized Fourier-like motion perception in the mammalian visual system. They originally
were proposed in [Adelson and Bergen, 1985] as a solution for the phase dependency
problem that occurs when detecting features with spatio-temporal filters. The model was
originally chosen for [Nishimoto et al., 2011] because it has proven to be consistent with a
large body of experimental data of the visual system.

In general, motion energy is the sum of the squared output of spatiotemporal filters which
are 90° out of phase in space. These filters are said to be in spatial quadrature. This
summation leads to a phase-independent response – see Figure A.1 for a simple illustration.
Furthermore, usually a non-linearity is applied on this sum of squares to compress the
feature data.

In the non-directional motion energy model from [Nishimoto et al., 2011] used here, the
gabor wavelet basis set consists of 6555 3D filters. The filters are created by completely
combining sets of six spatial frequencies [0, 2, 4, 8, 16, 32] (measured in cycles per image),
three temporal frequencies [0Hz, 2Hz, 4Hz] and eight directions [0°, 45°, 90°, 135°, 180°,
225°, 270°, 315°]. Using all these filters (except of a subset considered unnecessary) would
result in the directional motion energy model also discussed in this publications. To get

Figure A.1: The sum of quadrature pairs of spatio-temporal fil-
ters, resulting in a motion energy scalar. Illustration source:
[Adelson and Bergen, 1985].
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Figure A.2: Complete motion energy feature extraction from
[Nishimoto et al., 2011] (also the illustration source).

the non-directional version, the outputs of anti-directional filters (e.g. 180° vs. 0°) are
summed at each spatial position, orientation and temporal frequency. Please refer to the
supplementary material of [Nishimoto et al., 2011] for full details on the structure of the
Gabor Filter Pyramid.

The video stimuli are first passed through a color space conversion into the CIELAB
colorspace. The model then proceeds to work on the pixel data in the luminance channel.
Patches from the video data are taken from a block-grid structure and convolved with all
quadrature filter pairs from the filter bank, extracting their motion energy. The block-grid
structure is adaptive to the spatial frequency of the filters. Refer to Figure A.2 for an
illustration.

Note that as in any model discussed in this project the motion energy features are finally
temporally down-sampled from the frequency used in the experiment (15Hz) to the sampling
rate of the BOLD signal acquisition (1Hz or 2Hz) by taking the mean over the cycle. Finally
each motion energy feature is rescaled to zero mean and unit variance for the machine
learning algorithms to work properly.

Complete details for all intermediate steps can be found in [Nishimoto et al., 2011] and
especially in its supplementary material. In practical instructions, the motion energy feature
extraction can be described as follows:

1. Create the described set of spatio-temporal 3D Gabor filter pairs. Pairs should be in
spatial quadrature, i.e. such that one filter is zero when the other one is at maximum.

2. Extract the luminance channel from the color-converted original video data.

3. Convolve all filters with the video stimuli’s luminance channels. This is done by
taking patches from a grid placed over the stimuli with all filters.

4. Square the convolved responses of the spatial quadrature filters. Take the complete
sum over the two resulting vectors.

5. Sum the complete sums of the spatial quadrature filters.

6. Pass the final sum through the log-transformation (the static non-linearity) to obtain
the final motion energy feature.
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A.2 Semantic features

7. Rescale each motion energy feature with a z-transformation to let the feature reside
within zero mean and unit variance.

During this project we had the opportunity to access and experiment with the original
motion energy model code from [Nishimoto et al., 2011].

A.2 Semantic features

The Semantic features we use are not identical to the WordNet labels from
[Huth et al., 2012]. We instead used a set of 1000 labels that was created semi-automatically
based on a word2vec vector space trained on the Japanese Wikipedia corpus. For every
one-second movie clip, 5 Japanese students were asked to annotate them in their native
language. These labels were then projected into the word2vec vector space. The final
word2vec representation for each 1-second clip was created by averaging over the 5 repre-
sentation vectors. In essence this is similar to the WordNet labels from [Huth et al., 2012],
however it uses a continuous vector space for representation. Note that this feature set is
in a preliminary state and was acquired through personal communication.
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